Jump to content

Milan Milošević

Administrators
  • Content Count

    11
  • Joined

  • Last visited

Posts posted by Milan Milošević


  1. Quote

     

    Yes. You can't see a black hole directly, of course, since light can't get past the horizon. That means that we have to rely on indirect evidence that black holes exist.

    Suppose you have found a region of space where you think there might be a black hole. How can you check whether there is one or not? The first thing you'd like to do is measure how much mass there is in that region. If you've found a large mass concentrated in a small volume, and if the mass is dark, then it's a good guess that there's a black hole there. There are two kinds of systems in which astronomers have found such compact, massive, dark objects: the centers of galaxies (including perhaps our own Milky Way Galaxy), and X-ray-emitting binary systems in our own Galaxy.

    According to a recent review by Kormendy and Richstone (to appear in the 1995 edition of "Annual Reviews of Astronomy and Astrophysics"), eight galaxies have been observed to contain such massive dark objects in their centers. The masses of the cores of these galaxies range from one million to several billion times the mass of the Sun. The mass is measured by observing the speed with which stars and gas orbit around the center of the galaxy: the faster the orbital speeds, the stronger the gravitational force required to hold the stars and gas in their orbits. (This is the most common way to measure masses in astronomy. For example, we measure the mass of the Sun by observing how fast the planets orbit it, and we measure the amount of dark matter in galaxies by measuring how fast things orbit at the edge of the galaxy.)

    These massive dark objects in galactic centers are thought to be black holes for at least two reasons. First, it is hard to think of anything else they could be: they are too dense and dark to be stars or clusters of stars. Second, the only promising theory to explain the enigmatic objects known as quasars and active galaxies postulates that such galaxies have supermassive black holes at their cores. If this theory is correct, then a large fraction of galaxies -- all the ones that are now or used to be active galaxies -- must have supermassive black holes at the center. Taken together, these arguments strongly suggest that the cores of these galaxies contain black holes, but they do not constitute absolute proof.

    Two very recent discovery has been made that strongly support the hypothesis that these systems do indeed contain black holes. First, a nearby active galaxy was found to have a "water maser" system (a very powerful source of microwave radiation) near its nucleus. Using the technique of very-long-baseline interferometry, a group of researchers was able to map the velocity distribution of the gas with very fine resolution. In fact, they were able to measure the velocity within less than half a light-year of the center of the galaxy. From this measurement they can conclude that the massive object at the center of this galaxy is less than half a light-year in radius. It is hard to imagine anything other than a black hole that could have so much mass concentrated in such a small volume. (This result was reported by Miyoshi et al. in the 12 January 1995 issue of Nature, vol. 373, p. 127.)

    A second discovery provides even more compelling evidence. X-ray astronomers have detected a spectral line from one galactic nucleus that indicates the presence of atoms near the nucleus that are moving extremely fast (about 1/3 the speed of light). Furthermore, the radiation from these atoms has been redshifted in just the manner one would expect for radiation coming from near the horizon of a black hole. These observations would be very difficult to explain in any other way besides a black hole, and if they are verified, then the hypothesis that some galaxies contain supermassive black holes at their centers would be fairly secure. (This result was reported in the 22 June 1995 issue of Nature, vol. 375, p. 659, by Tanaka et al.)

    A completely different class of black-hole candidates may be found in our own Galaxy. These are much lighter, stellar-mass black holes, which are thought to form when a massive star ends its life in a supernova explosion. If such a stellar black hole were to be off somewhere by itself, we wouldn't have much hope of finding it. However, many stars come in binary systems -- pairs of stars in orbit around each other. If one of the stars in such a binary system becomes a black hole, we might be able to detect it. In particular, in some binary systems containing a compact object such as a black hole, matter is sucked off of the other object and forms an "accretion disk" of stuff swirling into the black hole. The matter in the accretion disk gets very hot as it falls closer and closer to the black hole, and it emits copious amounts of radiation, mostly in the X-ray part of the spectrum. Many such "X-ray binary systems" are known, and some of them are thought to be likely black-hole candidates.

    Suppose you've found an X-ray binary system. How can you tell whether the unseen compact object is a black hole? Well, one thing you'd certainly like to do is to estimate its mass. By measuring the orbital speed of visible star (together with a few other things), you can figure out the mass of the invisible companion. (The technique is quite similar to the one we described above for supermassive black holes in galactic centers: the faster the star is moving, the stronger the gravitational force required to keep it in place, and so the more massive the invisible companion.) If the mass of the compact object is found to be very large very large, then there is no kind of object we know about that it could be other than a black hole. (An ordinary star of that mass would be visible. A stellar remnant such as a neutron star would be unable to support itself against gravity, and would collapse to a black hole.) The combination of such mass estimates and detailed studies of the radiation from the accretion disk can supply powerful circumstantial evidence that the object in question is indeed a black hole.

    Many of these "X-ray binary" systems are known, and in some cases the evidence in support of the black-hole hypothesis is quite strong. In a review article in the 1992 issue of Annual Reviews of Astronomy and Astrophysics, Anne Cowley summarized the situation by saying that there were three such systems known (two in our galaxy and one in the nearby Large Magellanic Cloud) for which very strong evidence exists that the mass of the invisible object is too large to be anything but a black hole. There are many more such objects that are thought to be likely black holes on the basis of slightly less evidence. Furthermore, this field of research has been very active since 1992, and the number of strong candidates by now is larger than three.

    Source: http://cosmology.berkeley.edu/Education/BHfaq.html#q7

     

     


  2. Quote

     

    Stars with more than 15 solar masses burst up in the form of hypernova with a gamma ray burst resulting in a stellar remnant a BLACK HOLE. Now as a star grows it core contracts and outer layer expands due to yhe increasing heat. Then as the helium fusses to form higher elements a core of carbon is formed. This iron core brings an end to the fusion and the core is very dense, enough to break the neutron degeneracy pressure( neutrons cannot occupy the same quantum state.) which leads to the gravitational collapse of the core and they blast up to form a black hole.

    Time dosen’t really change or stop . As per the theory of relativity light has the same speed everywhere which is 3,00,000 km/s. Now as you accelerate near the speed of light the time decreases. In a black hole the gravity is very high than light cannot escape it which means you would need a higher escape velocity. In this case time has to decrease. So the time inside a black hole becomes very less and you cannot notice it.

    Source: https://www.quora.com/Why-do-some-stars-end-up-as-black-holes-How-does-time-change-in-black-holes

     

     


  3. Quote

    The answer involves the gravity and the internal pressure within the star. These two things oppose each other -- the gravitational force of the star acting on a chunk of matter at the star's surface will want to cause that matter to fall inward, but the internal pressure of the star, acting outward at the surface, will want to cause the matter to fly outward. When these two are balanced (i.e., equal in strength) the star will maintain its size: neither collapse not expand. Such is the case for the Sun at the moment, and even, for that matter, for the Earth.

    However, when a star runs out of nuclear fuel, and therefore continues to lose energy from the surface (it is emitting light energy), while not replacing the lost energy through nuclear fusion (no more nuclear fuel), gravity will win out over internal pressure and the star will contract slowly or collapse quickly depending upon the details of the internal structure and composition. Gravity wins out over the internal pressure of the star, because that pressure was produced by a normal, hot gas, and that gas is losing energy as the star radiates energy from the surface.

    The star may thus end up as a black hole. It just depends upon whether or not the collapse is stopped at some smaller size once another source of pressure (other than what is produced by a normal, hot gas) can become sufficiently strong to balance the inward gravitational force. There are other forms of pressure besides that produced by a hot gas. Pressing your hand upon a desk top will let you experience one of these other pressures --- the desk pushes up against you, indeed it can support your weight (gravitational force)! The pressure that keeps the desk rigid against your weight is caused by forces between the atoms in the desk.

    Furthermore, electrons within atoms must avoid each other (for example, they cannot all be in the same atomic "orbit" --- this is called "the exclusion principle"). Therefore, if we had a collection of freely moving electrons they would also avoid each other: the harder you compress the collection (the smaller the volume they are confined in) the more they rebel against the squeeze --- a pressure opposes your confinement of the electrons.

    This "electron avoidance" pressure can only become strong enough to oppose the gravitational forces within a star of about the mass of the Sun when the star is compressed by gravity to about the diameter of the Earth. Thus a star as massive as the Sun can be prevented from becoming a black hole when it collapses to the size of the Earth, and the internal "electron avoidance" pressure (called the "degenerate electron pressure") becomes strong enough to hold the star up. This sort of pressure does not depend upon the energy content of the star ---- even if the star continues to lose energy from its surface, the pressure will continue to hold the star up. Our Sun can never become a black hole.

    However, if the star is more massive than something like 3 to 5 solar masses, its gravitational forces will be larger, and its internal degenerate electron pressure will never be sufficient to stop its collapse. It turns out that neutrons can also obey the exclusion principle and neutrons will be produced in abundance when a massive star collpses, but even neutron degeneracy cannot stop the collapse of massive stars --- anything over 3 to 5 solar masses cannot be stopped, it will become a black hole according to current thinking.

    Source: http://www1.phys.vt.edu/~jhs/faq/blackholes.html#q1

     


  4. 20190410-78m-800x466.png.cc0f5094ff2248c67ba3825ee987cec2.png

    Scientists have obtained the first image of a black hole, using Event Horizon Telescope observations of the center of the galaxy M87. The image shows a bright ring formed as light bends in the intense gravity around a black hole that is 6.5 billion times more massive than the Sun. This long-sought image provides the strongest evidence to date for the existence of supermassive black holes and opens a new window onto the study of black holes, their event horizons, and gravity. Credit: Event Horizon Telescope Collaboration


  5. Quote

     

    An international collaboration presents paradigm-shifting observations of the gargantuan black hole at the heart of distant galaxy Messier 87

    The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Today, in coordinated press conferences across the globe, EHT researchers reveal that they have succeeded, unveiling the first direct visual evidence of a supermassive black hole and its shadow.

    This breakthrough was announced today in a series of six papers published in a special issue of The Astrophysical Journal Letters. The image reveals the black hole at the center of Messier 87, a massive galaxy in the nearby Virgo galaxy cluster. This black hole resides 55 million light-years from Earth and has a mass 6.5 billion times that of the Sun.

    The EHT links telescopes around the globe to form an Earth-sized virtual telescope with unprecedented sensitivity and resolution. The EHT is the result of years of international collaboration, and offers scientists a new way to study the most extreme objects in the Universe predicted by Einstein’s general relativity during the centennial year of the historic experiment that first confirmed the theory.

    "We have taken the first picture of a black hole," said EHT project director Sheperd S. Doeleman of the Center for Astrophysics | Harvard & Smithsonian. "This is an extraordinary scientific feat accomplished by a team of more than 200 researchers."

    Black holes are extraordinary cosmic objects with enormous masses but extremely compact sizes. The presence of these objects affects their environment in extreme ways, warping spacetime and super-heating any surrounding material.

    "If immersed in a bright region, like a disc of glowing gas, we expect a black hole to create a dark region similar to a shadow — something predicted by Einstein’s general relativity that we’ve never seen before, explained chair of the EHT Science Council Heino Falcke of Radboud University, the Netherlands. "This shadow, caused by the gravitational bending and capture of light by the event horizon, reveals a lot about the nature of these fascinating objects and allowed us to measure the enormous mass of M87’s black hole."

    Multiple calibration and imaging methods have revealed a ring-like structure with a dark central region — the black hole’s shadow — that persisted over multiple independent EHT observations.

    "Once we were sure we had imaged the shadow, we could compare our observations to extensive computer models that include the physics of warped space, superheated matter and strong magnetic fields. Many of the features of the observed image match our theoretical understanding surprisingly well," remarks Paul T.P. Ho, EHT Board member and Director of the East Asian Observatory. "This makes us confident about the interpretation of our observations, including our estimation of the black hole’s mass."

    Creating the EHT was a formidable challenge which required upgrading and connecting a worldwide network of eight pre-existing telescopes deployed at a variety of challenging high-altitude sites. These locations included volcanoes in Hawai`i and Mexico, mountains in Arizona and the Spanish Sierra Nevada, the Chilean Atacama Desert, and Antarctica.

    The EHT observations use a technique called very-long-baseline interferometry (VLBI) which synchronises telescope facilities around the world and exploits the rotation of our planet to form one huge, Earth-size telescope observing at a wavelength of 1.3 mm. VLBI allows the EHT to achieve an angular resolution of 20 micro-arcseconds — enough to read a newspaper in New York from a sidewalk café in Paris.

    The telescopes contributing to this result were ALMA, APEX, the IRAM 30-meter telescope, the James Clerk Maxwell Telescope, the Large Millimeter Telescope Alfonso Serrano, the Submillimeter Array, the Submillimeter Telescope, and the South Pole Telescope. Petabytes of raw data from the telescopes were combined by highly specialised supercomputers hosted by the Max Planck Institute for Radio Astronomyand MIT Haystack Observatory.

    The construction of the EHT and the observations announced today represent the culmination of decades of observational, technical, and theoretical work. This example of global teamwork required close collaboration by researchers from around the world. Thirteen partner institutions worked together to create the EHT, using both pre-existing infrastructure and support from a variety of agencies. Key funding was provided by the US National Science Foundation (NSF), the EU's European Research Council (ERC), and funding agencies in East Asia.

    "We have achieved something presumed to be impossible just a generation ago," concluded Doeleman. "Breakthroughs in technology, connections between the world's best radio observatories, and innovative algorithms all came together to open an entirely new window on black holes and the event horizon."

    Credits: https://eventhorizontelescope.org/

    More information is available at


  6. Welcome to your new Invision Community!


    Congratulations on your purchase of our software and setting up your community. Please take some time and read through the Getting Started Guide and Administrator Documentation. The Getting Started Guide will walk you through some of the necessary steps to setting up an IP.Board and starting your community. The Administrator Documentation takes you through the details of the capabilities of IP.Board.


    You can remove this message, topic, forum or even category at any time.


    Go to the documentation now...

×